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Abstract

Metaheuristic algorithms are efficient techniques for a class of mathematical optimization problems 
without having to deeply adapt to the inherent nature of each problem. They are very useful for structural 
design optimization in which the cost of gradient computation can be very expensive. Among them, the 
characteristics of simulated annealing and genetic algorithms are briefly discussed. In Metropolis genetic 
algorithm, favorable features of Metropolis criterion in simulated annealing are incorporated in the 
reproduction operations of simple genetic algorithm. Numerical examples of structural design optimization 
are presented. The example structures are truss, breakwater and steel box girder bridge. From the 
theoretical evaluation and numerical experience, performance and applicability of metaheuristic algorithms 
for structural design optimization are discussed.
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Ⅰ. Introduction

An optimization problem is the problem of 
finding the best solution from all feasible ones. To 
solve the optimization problem, optimization 
algorithms are needed. There are many optimization 
algorithms which can be classified in many ways, 
depending on the focus and characteristics.

If the gradient of a function is the focus, 
optimization can be classified into gradient-based 
algorithms and gradient-free algorithms. Gradient- 
based algorithms such as hill-climbing use 

derivative information. Gradient-free algorithms do 
not use any derivative information but the values 
of the function itself. Some functions may have 
discontinuities or it may be expensive to calculate 
derivatives accurately. And thus gradient-free 
algorithms become very useful in this case(Ryu et 
al., 2011).

Optimization algorithms can also be classified as 
deterministic or stochastic. If an algorithm works in 
a mechanical deterministic manner without any 
random nature, it is called deterministic. It will 
reach the same final solution if we start with the 
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same initial point in the deterministic algorithms. 
Stochastic algorithms generate and use random 
variables. Stochastic algorithms will usually reach a 
different solution every time the algorithm is run, 
even though the same initial point is used. 
Conventional deterministic optimization algorithm 
assumes that the information of the function and 
derivative is available and that this information is 
used to determine the search direction in a 
deterministic manner at every step of the algorithm. 
In many practical problems, such information is not 
available(Boussaid et al., 2013). 

Algorithms with stochastic components were 
often referred to as heuristic in the past, though the 
recent literature tends to refer to them as 
metaheuristics.  A metaheuristic is a higher-level 
strategy that guides and modifies other heuristics to 
produce solutions to an wide range of hard 
optimization problems without having to deeply 
adapt to each problem. Many metaheuristics 
implement some form of stochastic optimization, so 
that the solution found is dependent on the set of 
random variables generated. Notable examples of 
metaheuristics include genetic algorithms, simulated 
annealing, tabu search, etc. In general, 
finite-dimensional constrained minimization problems 
are symbolically expressed as: 

Find a design variable vector x∊Rn;
to minimize the cost function f(x), 
subject to the m constraints gi(x)≤0.
Recently, a considerable amount of research 

effort has been made for the development and 
application of metaheuristic methods in various 
fields of engineering optimization. Among them, 
simulated annealing(SA) and genetic algorithms 
(GAs) have been advantageously applied for the 
structural design optimization. SA has a favorable 
advantage of possible convergence to a precise 

global optimum. However, its major drawback lies 
in the time-consuming computation to reach the 
neighborhood of global optimum, or slower 
convergence(Van Laarhoven and Aarts, 1987). GA 
has various versions such as simple GA(SGA), 
micro-GA(μGA), hybrid GA, Metropolis GA(MGA) 
and others(Woo and Park, 2003; Ryu et al., 2006). 
They have been successfully applied in various 
fields of optimization.  

In the paper, characteristics and critical 
procedures of some metaheuristic algorithms such 
as SA and several GAs are reviewed. From the 
theoretical evaluation and numerical experience for  
optimum design problems of structures, performance 
and applicability of metaheuristic algorithms are 
discussed.

 

Ⅱ. Metaheuristic Algorithms

1. Simulated Annealing

Simulated annealing(SA) is a probabilistic method 
which simulates solid thermodynamic annealing 
process to obtain a well ordered solid state of 
minimal energy. This technique is often used for 
finding global optimum of a given function that 
may have local minima in a large search space. It 
was first proposed by Kirkpatrick et al.(1983). This 
method consists in carrying a solid at high 
temperature, then in lowering this temperature 
slowly. 

In SA, there are usually two basic iterative 
loops, i.e., an inner loop of Metropolis criterion or 
reproduction operation and an outer loop of 
temperature reduction or new design iteration. Once 
the initial values and starting current design are 
chosen, a random search is used to generate a new 
design in the inner loop of Metropolis criterion. 
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Metropolis criterion is a stochastic process to reach 
a thermal equilibrium status of a solid in heat bath 
(Metropolis et al., 1953). For a specified 
temperature, reproduction with Metropolis criterion 
will be continued until the maximum number of 
inner loop iteration is reached. In the high 
temperature, the acceptance probability becomes 
larger and most of new designs are accepted. In 
the outer loop iteration, the reduction of 
temperature is controlled by a cooling schedule 
until it becomes very small. If temperature becomes 
very small, acceptance probability also becomes 
smaller and the Metropolis criterion is hardly met. 
Thus, the global optimum will hardly be missed 
once it is found. The temperature is reduced 
according to the cooling schedule, i.e., the search 
domain is gradually reduced. Rapid reduction of the 
temperature may cause the convergence to an 
undesirable local optimum. 

2. Genetic Algorithms

Genetic algorithm(GA) is based on evolutionary 
ideas of natural selection and survival of the fittest 
in the ecosystem. GA generates solutions to 
optimization problems using techniques inspired by 
natural evolution, such as mutation, selection, and 
crossover. Simple GA(SGA) is robust and still 
applied in the fields of structural design 
optimization (Holland, 1992; Jin, 2000). However, a 
critical drawback of SGA lies in the premature 
convergence to a local optimum if any relatively 
dominant individual appears in early generation. 
Original SGA was developed by Holland in the 
early 1970s. Since then many variants of GAs have 
been derived and applied to optimization problems. 
A micro GA(μGA) was proposed by Krishnakumar 
(1989), in which the population size and amount of 

computation were successfully reduced without loss 
of variety of potential genetic information. Like 
SGA, μGA also uses tournament selection and 
one-point crossover as reproduction and crossover 
operator, respectively. However, crossover 
probability is usually taken as 1.0 so as to surely 
exchange the genetic information between selected 
individuals. Mutation is no more necessary since μ

GA uses the wide variety of genetic information 
through a restarting option. The elitism is favorably 
used in μGA in order to keep the best individual 
in a generation.

A Metropolis GA(MGA) was developed Ryu et 
al.(2005; 2006), in which Metropolis criterion is 
combined to the reproduction operator of SGA in 
addition to a roulette wheel selection MGA. [Fig. 
1] shows the flow chart of Metropolis GA.

[Fig. 1] Flow Chart of Metropolis Genetic Algorithm

At early generations, Metropolis criterion in 
MGA enables an individual with low fitness to be 
possibly accepted so that the genetic varieties may 
be maintained in the population without losing the 
potential genetic information. It also prevents the 
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convergence to a premature local optimum through 
the expansion of search space. Thus, a global 
optimum may not be missed and premature local 
optima can be avoided as well. At near-final 
generations, the Metropolis acceptance probability of 
low-fitness individual will be considerably reduced, 
and the reproduction operation like roulette wheel 
selection will be mainly used. Consequently, the 
precise convergence to a global optimum is assured 
within the minimal number of generations in MGA.

Ⅲ. Numerical Examples for Structural 
Design Optimization

1. Three-bar Truss

A symmetric 3-bar truss is shown in [Fig. 2] 
Cross-sectional areas(x1, x2, x3) of the members are 
the design variables. The constraints are based on 
member crushing, member buckling, failure by 
excessive deflection of node 4, and failure by 
resonance when the fundamental natural frequency 
of the structure is below a given threshold. 

[Fig. 2] Three-bar Truss

The cost function to be minimized is the total 
volume of the structure;

            (1)

2. Composite Breakwater

A composite breakwater consists of upright 
structure(Au) and foundation or rubble mound which 
is again composed of core(Ac) and revetments(Arl, 
Arw). In the [Fig. 3], design variables are defined 
as the dimension of structural components. The 
design constraints are based on sliding, overturning, 
stability, bearing capacity of structural components, 
etc.(Ryu et al., 2005). The cost function is the 
construction cost of unit length of the breakwater, 
which is expressed as weighted sum of structural 
components with the weighting factors or unit costs 
(cu, cc, crw, crl);

           (2)

[Fig. 3] Design Variables for Composite Breakwater

3. Composite Steel Box Girder Bridge

The design of a composite steel box girder 
bridge consists of the design of concrete slab and 
steel box girder sections. A concrete slab is first 
designed and then it is considered as a loading for 
the design of steel box girder. For the concrete 
slab, the thickness of the slab is selected as a 
design variable. Only one variable is enough since 
the steel ratio per unit width of reinforced concrete 
slab can be expressed in terms of its thickness. 
The width of the slab is assumed to be 
pre-determined. Design variables for the steel box 
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girder section are identified as shown in [Fig. 4]. 
They are upper flange thickness(x1), lower flange 
thickness(x2), web thickness(x3), projecting width of 
longitudinal compression stiffeners(x4), thickness of 
longitudinal compression stiffeners(x5), projecting 
width of longitudinal web stiffeners(x6), and 
thickness of longitudinal web stiffeners(x7). The 
single-cell box girder section is considered in the 
study and its depth and width are assumed to be 
pre-determined.

[Fig. 4] Design Variables for Steel Box Girder

Weight of the structure is a design cost function 
to be minimized. Hence, the cost function for the 
concrete slab, fc(x), is expressed as the thickness, 
T, itself. The cost function for the steel box girder, 
fs(x), is formulated as the weight per unit length of 
the girder. Here, Ws is the unit weight of the steel 
and As is the area of the girder section.

                (3)

The design constraints for a concrete slab are 
formulated according to the Standard Specifications 
of Korean Highway Bridges, in which the ultimate 
strength design method is recommended for the 
reinforced concrete structures. The design constraints 
for a steel box girder section are formulated 
according to the Standard Specifications of Korean 
Highway Bridges, which is the load and resistance 
factor design. The design constraints are based on 
flexural strength, shear strength, web slenderness, 
properties of longitudinal compression flange and 
web stiffeners, and deflection(Ryu et al., 2002).

Ⅳ. Numerical Results

1. Three-bar Truss

Input data for design optimization of 3-bar truss 
are listed in <Table 1>. As the parameters, the 
population size is 10 for SGA and MGA, and 5 
for μGA, and the maximum number of gnerations 
and the string length are commonly set to 200 and 
15, respectively. 

Input data Value
Young’s modulus 6.89Í107 kN/m2

Unit weight 0.69 kN/m3

Load 17.8 kN
Allowable stresses 34450, 137800 kN/m2

Allowable 
displacements 0.127Í10-3,0.127Í10-3 m

Lower bound on 
design variables 64.52Í10-6, 64.52Í10-6 m2

Upper bound on 
design variables 64.52Í10-3,64.52Í10-3 m2

Lower limit on 
frequency 2500 Hz

<Table 1> Input Data for Three-bar Truss 
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The results are presented in <Table 2>, where 
Nopt is the number of function evaluations to reach 
the optimum. As shown in the table, MGA yields 
the best solution with the minimal Nopt. MGA and 
SA give the exactly same optimum. However, the 
amount of computation in MGA is much less than 
that in SA, i.e., less than 20%. This shows the 
efficiency of MGA. The values of optima in table 
1 are the best results obtained out of 100 trials. In 
general, GAs may yield a different optimum in 
each trial. Thus, the global optimum is assured 
from the results of 100 trials. The distribution of 
optima in 100 trials is shown in [Fig. 5]. As 
shown in the figure, the probabilities to obtain the 
true global optimum(Popt) are 100% in MGA, 91% 
in SGA, and 43% in μGA, respectively. This 
shows the global convergence property and 
reliability of MGA.

Output SGA μGA MGA SA
x1(m2) 4.17×10-3 3.96×10-3 4.10×10-3 4.10×10-3

x2(m2) 1.73×10-3 2.52×10-3 2.00×10-3 2.00×10-3

Violation 0.0 0.0 0.0 0.0
Cost(m3) 3.47×10-4 3.49×10-4 3.4×10-4 3.46×10-4

Nopt 950 860 650 3341

<Table 2> Results of Three-bar Truss Example

[Fig. 5] Distribution of Obtained Optima for 
Three-bar Truss Problem

2. Composite Breakwater

Input data for design optimization of composite 
breakwater are wave height: 6.3m, wave period: 
11.4sec, water depth: 10.1m, friction coefficients: 
0.6 and 0.8, and angle of rubber mound: 0.46rad 
and 0.59rad. Lower and upper bound of design 
variables(x1~x6) are; (10,20), (1,15), (1,10), (0.1,5), 
and (1,15), respectively. Optimization parameters for 
GAs are the population size 60 for SGA and 
MGA, and 5 for μGA, and maximum number of 
generations 2000.

The best results of 100 trials are summarized in 
<Table 3>, where Popt is the probability to obtain 
the best optima shown in the corresponding 
column. 

Output SGA μGA MGA SA

x1(m) 15.92 15.43 16.10 15.87
x2(m) 6.91 6.57 6.94 6.96
x3(m) 6.66 7.10 6.63 6.88
x4(m) 8.02 8.03 8.04 8.30
x5(m) 1.00 0.99 1.00 0.99
x6(m) 5.50 5.50 5.11 5.44

Violation 0.00 0.00 0.00 0.00
Cost(m2) 422.67 429.26 421.00 421.00

Nopt 117960 4722 117240 139427
Popt 9 1 62 -

<Table 3> Results of Breakwater Example

The distribution of optima in 100 trials is shown 
in [Fig. 6]. The probability to obtain the best 
solution(Popt) is 62% in MGA, 9% in SGA, and 
only 1% in μGA, respectively. MGA needs less 
amount of computation than SA for the same 
quality of solutions. Comparing other GAs, MGA 
yields the best solution with the highest probability 
to obtain it.
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Span GA N x1(mm) x2(mm) x3(mm) x4(mm) x5(mm) x6(mm) x7(mm) fs(x)
(N/mm) F(x) Nopt

40m
SGA

5 10 14 9 0 0 160 9 890.5 1109.5 308(1540)
40 10 14 9 0 0 80 8 878.2 1121.8 75(3000)
80 10 14 9 0 0 80 8 878.2 1121.8 187(14960)

120 10 14 9 0 0 80 8 878.2 1121.8 47(5640)
μGA 5 10 14 9 0 0 80 8 878.2 1121.8 83(415)

50m
SGA

5 10 21 9 0 0 80 8 1050.6 949.4 271(1355)
40 10 21 9 0 0 80 8 1050.6 949.4 92(3680)
80 10 21 9 0 0 80 8 1050.6 949.4 155(12400)

120 10 22 9 0 0 50 30 1088.5 911.5 59(7080)
μGA 5 10 21 9 0 0 80 8 1050.6 949.4 96(480)

60m SGA

5 11 28 14 0 0 0 0 1391.8 608.2 390(1950)
40 11 29 9 0 0 80 8 1272.4 727.6 492(19680)
80 11 29 9 0 0 80 8 1272.4 727.6 147(11760)

120 11 29 9 0 0 80 8 1272.4 727.6 61(7320)
μGA 5 11 29 9 0 0 80 8 1272.4 727.6 134(670)

<Table 4> Results of Box Girder Example 

[Fig. 6] Distribution of Obtained Optima for 
Breakwater Problem

3. Composite Steel Box Girder

In the design of concrete slab, the vertical 
behavior of the slab is the only factor that is 
considered in design. So the same kind of problem 
is solved for all the design cases with the Carroll’s 
μGA. Since the optimization problem is a 
single-variable problem, the population size for the 
μGA is taken as N=1 as the Carroll’s GA Driver 
recommended(1998). The optimal solution is 
obtained in 13 generations and the results is the 

thickness of slab, x0=250mm
The results of design optimization for steel box 

of single-span bridge are summarized in <Table 4> 
As shown in the table, the μGA with N=5 gives 
the true optimum in minimum number of 
generations or it requires minimum number of 
function evaluations. It is also shown that the μ

GA is robust and more efficient than the SGA.
 

Ⅴ. Conclusion

Metaheuristic algorithms for structural design 
optimization are reviewed. Metaheuristics algorithms 
such as simulated annealing, genetic algorithm, tabu 
search, etc. have the following common 
characteristics; they are nature-inspired; they use 
stochastic components; and they do not use the 
gradient of the cost function. Simulated annealing is 
a good approximation method for the global 
optimization problem. Its advantage is an ability to 
prevent trapped in local minima. But simulated 
annealing takes long time to find the optimum. 
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Simple genetic algorithm is robust and applied wide 
range of optimization problems. However it cannot 
find a global optimum for some problems. Genetic 
algorithm has various versions such as micro 
genetic algorithm and Metropolis genetic algorithm. 
Metropolis genetic algorithm was developed by the 
combination of Metropolis criterion of simulated 
annealing and roulette wheel selection of simple 
genetic algorithm. The characteristics of simulated 
annealing and genetic algorithms are briefly 
discussed. Numerical examples of structural design 
optimization using metaheuristic algorithms are also 
presented. They are three bar truss, composite 
breakwater, and composite steel box girder. From 
the numerical results, performance and applicability 
of metaheuristic algorithms are evaluated. 
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